
Executing Command Scripts
This subsection explains the following commands which can be used in, or in conjunction with, command scripts:

CONTINUE session command
MACPARM session command
MESSAGE session command
PAUSE session command
PLAY function command
RECORD session command
REMARK session command

You will find examples of how to generate scripts using a macro under Generating Scripts using a Macro.

PLAY Function Command
Natural commands can be written and stored in a member. Such a member is called a command script. The script can
be executed with the PLAY function command. The commands are then executed sequentially. Scripts executed by
the PLAY command are written to the User Workpool (see the subsection Scripts in the User Workpool).

Command scripts can be stored as any of the following object types:

Natural object
PDS member
Workpool output file (see below)
VSE/ESA member
Macro
BS2000/OSD LMS element

Example:

Assume Natural member MYPROCA in library MYLIB contains the following lines:

ED MYLIB(PROGA);STOW;END
 ED MYLIB(PROGB);STOW;END
 ED MYLIB(PROGC);STOW;END

The command:

PLAY MYLIB(MYPROCA)

edits and stows the Natural programs PROGA, PROGB and PROGC.

A script that has been interrupted by an included PAUSE command (see below) can be cancelled by the session
command PLAY OFF. This command also deletes the workpool entry (see the subsection Scripts in the User
Workpool).
If an invalid command is detected in a command script during execution, and the script does not contain a
CONTINUE statement, the script is stopped automatically and the invalid command is displayed in the Natural
command line. You can correct the faulty command and reexecute it by pressing Enter. You can then continue
the script by issuing the PAUSE session command (see below).
If one of the played commands results in an error message (for example, if program PROGB in the above
example does not contain correct Natural source, the same logic applies as for invalid commands.
A command script held in a PDS, VSE/ESA or LMS member may not contain line numbers within the

1Copyright Software AG 2002

Executing Command ScriptsExecuting Command Scripts

member’s lines (for example, in columns 73 to 80). Thus, when editing such a command script, it is
recommended that you switch off the number mode of the Editor, either with the profile settings or by issuing
one of the Editor commands AUTOREN OFF or UNREN. You should be aware that the line numbers could have
been inherited unintentionally when copying lines from one EDIT session to another with the line commands
mentioned in this documentation. Line numbers contained in script lines could result in unpredictable error messages
during command script execution.
It is possible to use nested PLAY commands in a command script. The contents of a member to be played is
always entered at the top of the ##PLAY workpool session.

Example:

Assume the member EX1 contains the following lines:

EDIT NAT MYPROG
 PLAY NAT EXPLAY(CHG-AB)
 EDIT NAT MYPROG1
 PLAY NAT EXPLAY(CHG-AB)

and assume member CHG-AB contains the following lines:

CHANGE ’A’ ’B’ all
 STOW
 END

The command:

PLAY EX1

starts an edit session with Natural member MYPROG, plays the commands in CHG-AB, and only then is the
command EDIT MYPROG1 processed.

In the COMMAND field in your user profile, you can specify a command that is executed every time you start
Natural. You can specify a PLAY command in this profile field to start a command script when you log on (see
also the description of the COMMAND field in the User Defaults subsection of Section Profile Maintenance).
It might be useful when writing a command script to start it with RECORD ON and finish it with RECORD
OFF. This causes all messages to be recorded in the User Workpool (see the RECORD session command
below).

RECORD Session Command
You can record Natural commands using the RECORD session command. After you have issued the RECORD
session command, all ensuing commands are recorded until you issue the RECORD OFF session command. The
recorded commands can be found in the User Workpool in member ##RECORD. This member can be PLAYed.

If a command issued during the recording session causes a message, the message is also recorded in the User
Workpool member ##RECORD, preceded by two asterisks ** . The message is ignored when the member is executed
with the PLAY command.

PAUSE Session Command
In some cases it is useful to interrupt a script being executed, for example in order to manipulate some data
manually, and then continue executing the script. This can be done by writing the session command PAUSE in the
script. When the script is executing, it stops at the place the PAUSE command was entered. To continue the script,
simply issue the PAUSE command manually.

Copyright Software AG 20022

Executing Command ScriptsRECORD Session Command

Example:

Assume the member MYPROCB contains the following lines:

EDIT MYJOB
 PAUSE
 SUB
 FOLLOW
 CAN

The command:

PLAY MYPROCB

starts an edit session with the member MYJOB and then stops in order to allow modification of the JCL. If you then
issue the PAUSE command from the Natural command line, the JCL is submitted, job status messages are displayed
(FOLLOW command) and the edit session is cancelled.

Note:
The PAUSE command must always be the last command or the only command in a script line.

Scripts in the User Workpool
A script which is executed by the PLAY command is stored in the User Workpool in an entry named ##PLAY.
When a script is interrupted by a PAUSE command or an error, the lines not yet executed are in the workpool
member ##PLAY and can be modified.

CONTINUE Session Command
The CONTINUE command can be used in command scripts to gain more flexible control in error situations. If no
CONTINUE statement is in the command script, the script is set to PAUSE mode after an error.

If a CONTINUE statement (which can be compared to a label) is in the script, the following actions are taken:

1. RECORD ON is set internally if not activated by the user.
2. The command causing the error and the message is recorded.
3. All lines of the script until the next CONTINUE command are deleted and execution of these lines is skipped.
4. Processing continues with the next CONTINUE statement. All following statements are executed.
5. Termination resets RECORD to its previous value and informs the user if an error has occurred.

Example:

KEYS 3 PAUSE
 HELP VERIFY
 MESSAGE 7480
 TECH

 CONTINUE
 REMARK PROCESSING WILL CONTINUE HERE AFTER ERROR
 KEYS 3 END

The above script modifies the user profile. By using the CONTINUE command it makes sure that, after execution of
the script, PF3 is reset to its default value from the user profile, even if errors have occurred during execution of the
script.

3Copyright Software AG 2002

Scripts in the User WorkpoolExecuting Command Scripts

MACPARM Session Command
The MACPARM command is used in command scripts to put data on the Natural stack which is read by a macro
using an input statement later in the command script.

This avoids prompting by the macro for parameters, when using macros in command scripts. The MACPARM
command must be the only command in a source line.

The command format is:

MACPARM p1

Explanation of parameters:

Parameter Meaning

p1 Maximum length of this parameter is 50 bytes and it can contain blanks.

Examples:

The commands:

MACPARM LS PDS JW(A*)
 PLAY MAC MAC1

pass the command LS PDS JW(*) to macro MAC1.

Another useful example can be found in the member VERIFY in the Natural Example Library.

MESSAGE Session Command
The MESSAGE command can be used in command scripts to display a text during execution of a script on the
screen and to interrupt the active command script. The MESSAGE command must be the only command in a source
line.

The command format is:

MESSAGE p0,p1,...pn

Explanation of parameters:

Parameter Meaning

p0 Must be a 4-digit error message number. First, the user library SYSISPFU is searched for the message
text. If it does not exist, it is taken from the system library SYSISPS1.

p1,...pn Optional parameters which are used to replace variable parameters (:1: :n:) in the text.
Parameters must usually be separated with your parameter delimiter, usually a comma (,) and can
contain blanks.

Examples:

Copyright Software AG 20024

Executing Command ScriptsMACPARM Session Command

The command:

MESSAGE 6812,MYPROG

results in the following message, if no text for this number is available in the user library SYSISPFU:

Member MYPROG not found

The command:

MESSAGE 6809,Please enter some text

results in the following message, if no text for this number is available in the user library SYSISPFU:

Please enter some text

Another useful example can be found in member VERIFY in the Natural Example Library.

REMARK Session Command
The REMARK command is used in command scripts to document the command script.The REMARK command
must be the only command in a source line.

The command format is:

REMARK text

Example:

REMARK The following command extracts all members
 REMARK including the string Adabas
 LIST PDS JW(*) SC=Adabas

Generating Scripts using a Macro
A command script can be generated by a macro. With this mechanism, scripts can be created dynamically.

Example: Generate prompt for CHANGE

For example, executing the following macro with the PLAY command generates a prompt for a CHANGE command
to be used on a member, with a choice of a STOW or SAVE command after the change is made:

5Copyright Software AG 2002

REMARK Session CommandExecuting Command Scripts

§ RESET #MEMBER(A8) #FROM(A16) #TO(A16) #STOW(A1)
 § INPUT(AD=MI) ’Change’ #FROM ’To’ #TO ’in member’ #MEMBER
 § / ’Stow?’ #STOW
 EDIT NAT §#MEMBER
 CHANGE ’§#FROM’ ’§#TO’ all
 § IF #STOW NE ’ ’ DO
 STOW
 § DOEND
 § ELSE DO
 SAVE
 § DOEND
 END

Example: Installation Verification

The following macro generates a command script which verifies Natural installation. It also provides you with a
working example of how the commands CONTINUE, MACPARM, MESSAGE and REMARK function:

§ DEFINE DATA LOCAL
 § 1 #SUB-SYSTEM (A3)
 § 1 #SUB-SYSTEM-INDEX(N1)
 § 1 #SUBSYS-ARRAY (4)
 § 2 #SUBSYS-LONG (A10) INIT <’NATURAL’, ’OS/390’, ’VSE’, ’BS2000/OSD’>
 § 2 REDEFINE #SUBSYS-LONG
 § 3 #SUBSYS-SHORT (A3)
 § END-DEFINE
 § IF *DATA GT 0
 § INPUT #SUB-SYSTEM
 § EXAMINE #SUB-SYSTEM TRANSLATE INTO UPPER
 § EXAMINE #SUBSYS-SHORT(*) FOR #SUB-SYSTEM INDEX #SUB-SYSTEM-INDEX
 § END-IF
 § IF #SUB-SYSTEM-INDEX EQ 0
 § #SUB-SYSTEM-INDEX := 1 /* NATURAL is default
 § END-IF
 § #SUB-SYSTEM := #SUBSYS-SHORT(#SUB-SYSTEM-INDEX)
 KEYS 3 PAUSE
 HELP VERIFY
 MESSAGE 7480,§#SUBSYS-LONG(#SUB-SYSTEM-INDEX)
 TECH
 END
 § IF #SUB-SYSTEM-INDEX EQ 1
 PLAY NAT VERIFYO
 § ELSE
 MACPARM §#SUB-SYSTEM-INDEX
 PLAY MAC VERIFYS
 § END-IF
 CONTINUE
 REMARK Processing will continue here after error
 REMARK and pf3 will be reset to its initial profile value
 KEYS 3 INITIAL
 RECORD OFF

Copyright Software AG 20026

Executing Command ScriptsGenerating Scripts using a Macro

	Executing Command Scripts
	PLAY Function Command
	RECORD Session Command
	PAUSE Session Command
	Scripts in the User Workpool
	CONTINUE Session Command
	MACPARM Session Command
	MESSAGE Session Command
	REMARK Session Command
	Generating Scripts using a Macro

